Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Journal of Breast Cancer ; : 178-192, 2022.
Article in English | WPRIM | ID: wpr-937752

ABSTRACT

Purpose@#Chromosomal instability (CIN) contributes to intercellular genetic heterogeneity and has been implicated in paclitaxel (PTX) resistance in breast cancer. In this study, we explored polo-like kinase 1 (PLK1) as an important regulator of mitotic integrity and as a useful predictive biomarker for PTX resistance in breast cancer. @*Methods@#We performed PTX resistance screening using the human kinome CRISPR/ Cas9 library in breast cancer cells. In vitro cell proliferation and apoptosis assays and in vivo xenograft experiments were performed to determine the effects of PLK1 on breast cancer cells. Immunofluorescence microscopy was used to measure the degree of multipolar cell division. @*Results@#Kinome-wide CRISPR/Cas9 screening identified various kinases involved in PTX resistance in breast cancer cells; among these, PLK1 was chosen for further experiments.PLK1 knockdown inhibited the proliferation of MDA-MB-231 and MDA-MB-468 cells in vitro and in vivo. Moreover, PLK1 silencing sensitized breast cancer cells and mouse xenograft tumor models to PTX cytotoxicity. Silencing of PLK1 induced the formation of multipolar spindles and increased the percentage of multipolar cells. In addition, PLK1 silencing resulted in the downregulation of BubR1 and Mad2 in breast cancer cells. Furthermore, PLK1 upregulation in primary breast cancer was associated with decreased overall patient survival based on the analysis of The Cancer Genome Atlas and Molecular Taxonomy of Breast Cancer International Consortium databases. @*Conclusion@#PLK1 plays an important role in PTX resistance by regulating CIN in breast cancer cells. Targeting PLK1 may be an effective treatment strategy for PTX-resistant breast cancers.

2.
Laboratory Animal Research ; : 108-118, 2020.
Article | WPRIM | ID: wpr-836892

ABSTRACT

Cancer is a very heterogeneous disease, displaying heterogeneity between patients (inter-tumoral heterogeneity) and heterogeneity within a patient (intra-tumoral heterogeneity). Precision oncology is a diagnostic and therapeutic approach for cancers based on the stratification of patients using genomic and molecular profiling of tumors. To develop diagnostic and therapeutic tools for the application of precision oncology, appropriate preclinical mouse models that reflect tumor heterogeneity are required. Patient-derived xenograft (PDX) models are generated by the engraftment of patient tumors into immunodeficient mice that retain several aspects of the patient’s tumor characteristics, including inter-tumoral heterogeneity and intra-tumoral heterogeneity. Therefore, PDX models can be applied in various developmental steps of cancer diagnostics and therapeutics, such as biomarker development, companion diagnostics, drug efficacy testing, overcoming drug resistance, and co-clinical trials. This review summarizes the diverse aspects of PDX models, addressing the factors considered for PDX generation, application of PDX models for cancer research, and future directions of PDX models.

3.
Cancer Research and Treatment ; : 1178-1187, 2020.
Article | WPRIM | ID: wpr-831138

ABSTRACT

Purpose@#Microsatellite instability (MSI) status may affect the efficacy of adjuvant chemotherapy in gastric cancer. In this study, the clinical characteristics of MSI-high (MSI-H) gastric cancer and the predictive value of MSI-H for adjuvant chemotherapy in large cohorts of gastric cancer patients were evaluated. Material and MethodsThis study consisted of two cohorts. Cohort 1 included gastric cancer patients who received curative resection with pathologic stage IB-IIIC. Cohort 2 included patients with MSI-H gastric cancer who received curative resection with pathologic stage II/III. MSI was examined using two mononucleotide markers and three dinucleotide markers. @*Results@#Of 359 patients (cohort 1), 41 patients (11.4%) had MSI-H. MSI-H tumors were more frequently identified in older patients (p < 0.001), other histology than poorly cohesive, signet ring cell type (p=0.005), intestinal type (p=0.028), lower third tumor location (p=0.005), and absent perineural invasion (p=0.027). MSI-H status has a tendency of better disease-free survival (DFS) and overall survival (OS) in multivariable analyses (hazard ratio [HR], 0.4; p=0.059 and HR, 0.4; p=0.063, respectively). In the analysis of 162 MSI-H patients (cohort 2), adjuvant chemotherapy showed a significant benefit with respect to longer DFS and OS (p=0.047 and p=0.043, respectively). In multivariable analysis, adjuvant chemotherapy improved DFS (HR, 0.4; p=0.040). @*Conclusion@#MSI-H gastric cancer had distinct clinicopathologic findings. Even in MSI-H gastric cancer of retrospective cohort, adjuvant chemotherapy could show a survival benefit, which was in contrast to previous prospective studies and should be investigated in a further prospective trial.

4.
Experimental & Molecular Medicine ; : e317-2017.
Article in English | WPRIM | ID: wpr-212089

ABSTRACT

Gliosarcoma (GS) is a rare variant (2%) of glioblastoma (GBM) that poses clinical genomic challenges because of its poor prognosis and limited genomic information. To gain a comprehensive view of the genomic alterations in GS and to understand the molecular etiology of GS, we applied whole-exome sequencing analyses for 28 GS cases (6 blood-matched fresh-frozen tissues for the discovery set, 22 formalin-fixed paraffin-embedded tissues for the validation set) and copy-number variation microarrays for 5 blood-matched fresh-frozen tissues. TP53 mutations were more prevalent in the GS cases (20/28, 70%) compared to the GBM cases (29/90, 32%), and the GS patients with TP53 mutations showed a significantly shorter survival (multivariate Cox analysis, hazard ratio=23.9, 95% confidence interval, 2.87–199.63, P=0.003). A pathway analysis showed recurrent alterations in MAPK signaling (EGFR, RASGRF2 and TP53), phosphatidylinositol/calcium signaling (CACNA1s, PLCs and ITPRs) and focal adhesion/tight junction (PTEN and PAK3) pathways. Genomic profiling of the matched recurrent GS cases detected the occurrence of TP53 mutations in two recurrent GS cases, which suggests that TP53 mutations play a role in treatment resistance. Functionally, we found that TP53 mutations are associated with the epithelial–mesenchymal transition (EMT) process of sarcomatous components of GS. We provide the first comprehensive genome-wide genetic alternation profiling of GS, which suggests novel prognostic subgroups in GS patients based on their TP53 mutation status and provides new insight in the pathogenesis and targeted treatment of GS.


Subject(s)
Humans , Glioblastoma , Gliosarcoma , Prevalence , Prognosis
5.
Experimental & Molecular Medicine ; : e267-2016.
Article in English | WPRIM | ID: wpr-210162

ABSTRACT

Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme that catalyzes crosslinking, polyamination or deamidation of glutamine residues in proteins. It has been reported that TG2 is involved in the pathogenesis of various inflammatory diseases including celiac disease, pulmonary fibrosis, cystic fibrosis, multiple sclerosis and sepsis. Recently, using a mouse model of bleomycin-induced lung fibrosis, we showed that TG2 is required to trigger inflammation via the induction of T helper type 17 (Th17) cell differentiation in response to tissue damage. However, the role of TG2 in inflammatory bowel disease (IBD), which is thought to be a Th17 cell-associated disease, has remained elusive. In this study, we investigated the role of TG2 in dextran sulfate sodium (DSS)-induced colitis, the most widely used mouse model for IBD. Age- and sex-matched wild-type and TG2(−/−) mice were fed 2% DSS for 7 days or 3.5% DSS for 5 days in drinking water. An in situ TG activity assay revealed that DSS treatment activates TG2 in various colon cell types, including columnar absorptive cells and goblet cells. DSS-treated TG2(−/−) mice showed lower interleukin (IL)-6, but higher IL-17A and RORγt (retinoic acid receptor-related orphan receptor-γt) expression levels in the colon tissues than that in the wild-type mice. Moreover, TG2(−/−) mice showed higher mortality than the wild-type mice because of DSS treatment. Nevertheless, we found no significant differences in changes of body weight, colon length, morphology, immune cell infiltration and in vivo intestinal permeability between DSS-treated wild-type and TG2(−/−) mice. These results indicate that TG2-mediated Th17 cell differentiation is not required for the pathogenesis of DSS-induced acute colitis.


Subject(s)
Animals , Child , Humans , Mice , Body Weight , Celiac Disease , Cell Differentiation , Child, Orphaned , Colitis , Colon , Cystic Fibrosis , Dextran Sulfate , Dextrans , Drinking Water , Fibrosis , Glutamine , Goblet Cells , Inflammation , Inflammatory Bowel Diseases , Interleukin-17 , Interleukins , Lung , Mortality , Multiple Sclerosis , Permeability , Pulmonary Fibrosis , Sepsis , Th17 Cells
6.
Korean Journal of Legal Medicine ; : 27-35, 2015.
Article in English | WPRIM | ID: wpr-152292

ABSTRACT

To determine blood alcohol concentration (BAC) by extrapolation, an understanding of basal pharmacokinetics is indispensable. Breath alcohol concentration (BrAC) has been used for the determination of body alcohol concentration replaced by BAC in Korea. Therefore, the determination of BAC/BrAC ratio is a key problem in alcohol pharmacokinetics. Among several factors, the ingested dose of alcohol and the allelic variation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) are the most significant factors influencing the pharmacokinetic parameters, particularly in the absorption and elimination phases. This study shows a detailed pharmacokinetic analysis of BAC and BrAC associated with genetic polymorphism including ALDH2 in 42 healthy Korean men. The change in the alcohol dose ingested influenced the maximum concentration (C(max)), the time to reach C(max) (T(max)), the absorption rate constant (K(01)), the area under the concentration-time curve (AUC(last)), and the hourly elimination rate. The conversion of wild-type 487Glu (ALDH2*1) to 487Lys (ALDH2*2) in human ALDH2 resulted in changes in C(max) (ALDH2*1/*1, 0.03+/-0.01 g/dL [+/-standard deviation] vs. ALDH2*1/*2, 0.05+/-0.004 g/dL [P<0.01]), AUC(last) (ALDH2*1/*1, 4.48+/-2.19 g.min/dL vs. ALDH2*1/*2, 7.52+/-1.26 g.min/dL [P<0.05]), and the BAC elimination rate (ALDH2*1/*1, 0.05+/-0.02 g/L/hr vs. ALDH2*1/*2, 0.09+/-0.01 g/L/hr [P<0.05]). Moreover, the comparison of BAC and BrAC by Bland-Altman plot showed good agreement, suggesting that the measurement of BrAC can be a good alternative for the determination of BAC, particularly in the post-absorption phase. These results provide fundamental information about the pharmacokinetics of alcohol and the determination of BAC in forensics.


Subject(s)
Humans , Male , Absorption , Alcohols , Aldehyde Dehydrogenase , Forensic Sciences , Korea , Pharmacokinetics , Polymorphism, Genetic
7.
Journal of Korean Medical Science ; : 363-369, 2014.
Article in English | WPRIM | ID: wpr-124855

ABSTRACT

Arterial restenosis frequently develops after open or endovascular surgery due to intimal hyperplasia. Since tissue transglutaminase (TG2) is known to involve in fibrosis, wound healing, and extracellular matrix remodeling, we examined the role of TG2 in the process of intimal hyperplasia using TG2-null mice. The neointimal formation was compared between TG2-null and wild-type (C57BL/6) mice by two different injury models; carotid ligation and carotid loop injury. In ligation model, there was no difference in intimal thickness between two groups. In loop injury model, intimal hyperplasia developed in both groups and the intimal/medial area ratio was significantly reduced in TG2-null mice (P = 0.007). TG2 was intensely stained in neointimal cells in 2 weeks. In situ activity of TG2 in the injured arteries steadily increased until 4 weeks compared to uninjured arteries. Taken together, intimal hyperplasia was significantly reduced in TG2-null mice, indicating that TG2 has an important role in the development of intimal hyperplasia. This suggests that TG2 may be a novel target to prevent the arterial restenosis after vascular surgery.


Subject(s)
Animals , Mice , Carotid Arteries/pathology , Disease Models, Animal , GTP-Binding Proteins/deficiency , Hyperplasia , Mice, Inbred C57BL , Transglutaminases/deficiency , Tunica Intima/pathology
8.
Experimental & Molecular Medicine ; : 310-318, 2010.
Article in English | WPRIM | ID: wpr-164514

ABSTRACT

Transglutaminase 4 is a member of enzyme family that catalyzes calcium-dependent posttranslational modification of proteins. Although transglutaminase 4 has been shown to have prostate-restricted expression pattern, little is known about the biological function of transglutaminase 4 in human. To gain insight into its role in prostate, we analyzed the expression status of human transglutaminase 4 in benign prostate hyperplasia (BPH) and prostate cancer (PCa). Unexpectedly, RT-PCR and nucleotide sequence analysis showed four alternative splicing variants of transglutaminase 4: transglutaminase 4-L, -M (-M1 and -M2) and -S. The difference between transglutaminase 4-M1 and -M2 is attributed to splicing sites, but not nucleotide size. The deduced amino acid sequences showed that transglutaminase 4-L, -M1 and -M2 have correct open reading frames, whereas transglutaminase 4-S has a truncated reading frame. RT-PCR analysis of clinical samples revealed that transglutaminase 4-M and -S were detected in all tested prostate tissue (80 BPH and 48 PCa). Interestingly, transglutaminase 4-L was found in 56% of BPH (45 out of 80) and only in 15% of PCa (7 out of 48). However, transglutaminase 4-L expression did not correlate with serum prostate-specific antigen (PSA) level, prostate volumes or PSA densities. These results will provide a clue to future investigation aiming at delineating physiological and pathological roles of human transglutaminase 4.

9.
Experimental & Molecular Medicine ; : 639-650, 2010.
Article in English | WPRIM | ID: wpr-162253

ABSTRACT

An abrupt increase of intracellular Ca2+ is observed in cells under hypoxic or oxidatively stressed conditions. The dysregulated increase of cytosolic Ca2+ triggers apoptotic cell death through mitochondrial swelling and activation of Ca2+-dependent enzymes. Transglutaminase 2 (TG2) is a Ca2+-dependent enzyme that catalyzes transamidation reaction producing cross-linked and polyaminated proteins. TG2 activity is known to be involved in the apoptotic process. However, the pro-apoptotic role of TG2 is still controversial. In this study, we investigate the role of TG2 in apoptosis induced by Ca2+-overload. Overexpression of TG2 inhibited the A23187-induced apoptosis through suppression of caspase-3 and -9 activities, cytochrome c release into cytosol, and mitochondria membrane depolarization. Conversely, down-regulation of TG2 caused the increases of cell death, caspase-3 activity and cytochrome c in cytosol in response to Ca2+-overload. Western blot analysis of Bcl-2 family proteins showed that TG2 reduced the expression level of Bax protein. Moreover, overexpression of Bax abrogated the anti-apoptotic effect of TG2, indicating that TG2-mediated suppression of Bax is responsible for inhibiting cell death under Ca2+-overloaded conditions. Our findings revealed a novel anti-apoptotic pathway involving TG2, and suggested the induction of TG2 as a novel strategy for promoting cell survival in diseases such as ischemia and neurodegeneration.


Subject(s)
Humans , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Calcimycin/pharmacology , Calcium/metabolism , Caspases/metabolism , Cell Death , Cell Survival , Cytochromes c/metabolism , Down-Regulation , GTP-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Ionophores/pharmacology , Mitochondria/metabolism , Transglutaminases/metabolism , bcl-2-Associated X Protein/genetics
10.
Experimental & Molecular Medicine ; : 621-628, 2007.
Article in English | WPRIM | ID: wpr-170424

ABSTRACT

Cervical cancer is characterized by a long period of preclinical dysplasia or carcinoma in situ progressing into invasive cancer. Although Papanicolaou (Pap) smear test has contributed significantly to the early detection of precursor lesions, the cytological screening has inherent problems that produce considerable false negative/positive results. Since the infection of high-risk type of human papillomavirus (HPV) is strongly associated with cervical cancer, we investigated the feasibility of an immunostaining test to detect cells infected by HPV in cervical smear. We produced monoclonal antibodies against HPV16 E7 in mice by repeated injections with the recombinant HPV16 E7. Western blot analysis and immunocytochemical assay demonstrated that the selected monoclonal antibody, mAb (130-9-7), reacts specifically with cultured cervical cancer cell lines infected by HPV16. Specific staining was observable with the HPV16-positive smear specimens obtained from the cervical cancer patients, whereas no staining was detected with the HPV-negative smear specimens. To achieve the desired sensitivity, specificity and reproducibility, we modified and optimized the conventional immunocytochemical procedure for cervical smear specimens. Our results suggest that this immunostaining method for detecting high-risk HPV in cervical smear may be used as a strategy to distinguish a high-risk group, especially those patients with low grade cytological abnormality.


Subject(s)
Animals , Female , Humans , Mice , Antibodies, Monoclonal , Antibodies, Viral , Cell Line , Cervix Uteri/virology , Human papillomavirus 16/genetics , Hybridomas , Immunohistochemistry/methods , Oncogene Proteins, Viral/genetics , Transfection , Uterine Cervical Neoplasms/virology , Vaginal Smears
11.
Experimental & Molecular Medicine ; : 576-581, 2004.
Article in English | WPRIM | ID: wpr-145921

ABSTRACT

The treatment of cystamine, a transglutaminase (TGase) inhibitor, has beneficial effects in several diseases including CAG-expansion disorders and cataract. We compared the inhibition characteristics of cystamine with those of cysteamine, a reduced form of cystamine expected to be present inside cells. Cystamine is a more potent inhibitor for TGase than cysteamine with different kinetics pattern in a non- reducing condition. By contrast, under reducing conditions, the inhibitory effect of cystamine was comparable with that of cysteamine. However, cystamine inhibited intracellular TGase activity more strongly than cysteamine despite of cytoplasmic reducing environment, suggesting that cystamine itself inhibits in situ TGase activity by forming mixed disulfides.


Subject(s)
Humans , Cell Line, Tumor , Comparative Study , Cystamine/pharmacology , Cysteamine/pharmacology , Enzyme Inhibitors/pharmacology , Transglutaminases/antagonists & inhibitors
12.
Experimental & Molecular Medicine ; : 496-499, 2002.
Article in English | WPRIM | ID: wpr-13037

ABSTRACT

Human papillomavirus E7 (HPV E7) is a viral oncoprotein that plays an important role in cervical carcinogenesis through binding with retinoblastoma protein (Rb). Inactivation of Rb by E7 is necessary but not sufficient for cellular transformation, suggesting other protein-protein interactions are required for E7-mediated cellular transformation aside from the interaction with Rb. However, studies on the oncogenic function of HPV E7 have been limited by its poor immunoreactivity. In this report, we show that the fixation of purified recombinant HPV E7 on blotted nitrocellulose membrane with glutaldehyde markedly enhanced the immunoreactivity of HPV E7 protein. Using HeLa and Caski cell line which are infected with HPV 18 and HPV 16, respectively, we demonstrated that native HPV E7 proteins also could be detected by this method. These results therefore can provide the experimental conditions for detection of HPV E7 proteins with greater sensitivity and may help to analyze E7 functions.


Subject(s)
Humans , Cell Extracts/chemistry , Cell Line , Immunochemistry/methods , Oncogene Proteins, Viral/analysis , Papillomaviridae/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL